翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

item tree analysis : ウィキペディア英語版
item tree analysis
Item tree analysis (ITA) is a data analytical method which allows constructing a
hierarchical structure on the items of a questionnaire or test from observed response
patterns.
Assume that we have a questionnaire with ''m'' items and that subjects can
answer positive (1) or negative (0) to each of these items, i.e. the items are
dichotomous. If ''n'' subjects answer the items this results in a binary data matrix ''D''
with ''m'' columns and ''n'' rows.
Typical examples of this data format are test items which can be solved (1) or failed
(0) by subjects. Other typical examples are questionnaires where the items are
statements to which subjects can agree (1) or disagree (0).

Depending on the content of the items it is possible that the response of a subject to an
item ''j'' determines her or his responses to other items. It is, for example, possible that
each subject who agrees to item ''j'' will also agree to item ''i''. In this case we say that
item ''j'' implies item ''i'' (short i \rightarrow j). The goal of an ITA is to uncover such
deterministic implications from the data set ''D''.
== Algorithms for ITA ==
ITA was originally developed by Van Leeuwe in 1974.〔See ''Van Leeuwe (1974)''〕 The result of his algorithm,
which we refer in the following as ''Classical ITA'', is a logically consistent set of
implications i \rightarrow j. Logically consistent means that if ''i'' implies ''j'' and ''j'' implies ''k'' then ''i'' implies ''k'' for each triple ''i'', ''j'', ''k'' of items. Thus the outcome of an ITA is a reflexive and transitive relation on the item set, i.e. a quasi-order on the items.

A different algorithm to perform an ITA was suggested in ''Schrepp (1999)''. This algorithm is called ''Inductive ITA''.

Classical ITA and inductive ITA both construct a quasi-order on the item set by explorative data analysis. But both methods use a different algorithm to construct this quasi-order. For a given data set the resulting quasi-orders from classical and inductive ITA will usually differ.

A detailed description of the algorithms used in classical and inductive ITA can be found in ''Schrepp (2003)'' or ''Schrepp (2006)''(). In a recent paper (Sargin & Ünlü, 2009) some modifications to the algorithm of inductive ITA are proposed, which improve the ability of this method to detect the correct implications from data (especially in the case of higher random response error rates).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「item tree analysis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.